Cours fondamental 2 (Lie, GA, GC, GT)

Global Lie theory

Philip Boalch

Contact : boalch à imj-prg.fr

Pas de notes de cours prévues.

Langue du cours : anglais

Présentation


The exponential map for a complex Lie group can be viewed as the operation taking the monodromy of the rational connection
$$ A \frac{dz}{z} $$
on the punctured z-disk (where A is in the Lie algebra). This transcendental map has a vast collection of generalisations, the Riemann-Hilbert-Birkhoff maps, considering Lie algebra valued rational one-forms with any number of poles of any order. The Lie group then gets replaced by a global analogue of a Lie group, a wild representation variety. For example if we take the one-form to be of the form:
$$(A z+ B) \frac{dz}{z}$$
with A generic, then the wild representation variety is the Poisson variety underlying the Drinfeld-Jimbo quantum group.

The aim of this course is to study this "Lie theory over a curve", introducing the key players on both the additive and multiplicative sides. The spaces involved have fascinating geometry and are related to braid groups, infinite Weyl groups, quantum groups, Poisson geometry, hyperkahler geometry, Coulomb branches, Painlevé-type algebraic differential equations, the global Langlands program, generalizations of Teichmuller theory...

Contenu

Prérequis

Some elementary aspects of the courses: Théorie de Lie, représentations et géométrie I, Variétés algébriques, Géométrie différentielle et Riemannienne, Surfaces de Riemann will be useful. The notes (\(\href{ https://webusers.imj-prg.fr/~philip.boalch/cours23/}{\text{here}}\)) might help too, as might some time spent playing with the following apps: \(\href{https://webusers.imj-prg.fr/~philip.boalch/stokesdiagrams.html}{\text{Stokes Diagrams}}\) and \(\href{https://webusers.imj-prg.fr/~philip.boalch/fissiongraphs.html}{\text{Fission Graphs}}\) (they will be explained in the course).

Bibliographie